Cawan Suci Crypto AI: Eksplorasi Terdepan Pelatihan Desentralisasi
Dalam seluruh rantai nilai AI, pelatihan model adalah tahap yang paling mengkonsumsi sumber daya dan memiliki hambatan teknis tertinggi, yang secara langsung menentukan batas kemampuan model dan efektivitas aplikasi nyata. Dibandingkan dengan pemanggilan ringan pada tahap inferensi, proses pelatihan memerlukan investasi daya komputasi skala besar secara terus-menerus, proses pengolahan data yang kompleks, dan dukungan algoritma optimasi yang intensif, merupakan "industri berat" sejati dalam pembangunan sistem AI. Dari perspektif paradigma arsitektur, metode pelatihan dapat dibagi menjadi empat kategori: pelatihan terpusat, pelatihan terdistribusi, pembelajaran federasi, dan pelatihan desentralisasi yang menjadi fokus pembahasan dalam artikel ini.
Pelatihan terpusat adalah cara tradisional yang paling umum, di mana semua proses pelatihan dilakukan oleh satu lembaga di dalam kluster kinerja tinggi lokal, dari perangkat keras, perangkat lunak dasar, sistem penjadwalan kluster, hingga semua komponen kerangka pelatihan dikoordinasikan oleh sistem kontrol yang terintegrasi. Arsitektur kolaboratif yang mendalam ini memungkinkan berbagi memori, sinkronisasi gradien, dan konten.